Non-Local Means Hole Repair Algorithm Based on Adaptive Block

Author:

Zhao Bohu1,Li Lebao12,Pan Haipeng1ORCID

Affiliation:

1. School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, China

2. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

RGB-D cameras provide depth and color information and are widely used in 3D reconstruction and computer vision. In the majority of existing RGB-D cameras, a considerable portion of depth values is often lost due to severe occlusion or limited camera coverage, thereby adversely impacting the precise localization and three-dimensional reconstruction of objects. In this paper, to address the issue of poor-quality in-depth images captured by RGB-D cameras, a depth image hole repair algorithm based on non-local means is proposed first, leveraging the structural similarities between grayscale and depth images. Second, while considering the cumbersome parameter tuning associated with the non-local means hole repair method for determining the size of structural blocks for depth image hole repair, an intelligent block factor is introduced, which automatically determines the optimal search and repair block sizes for various hole sizes, resulting in the development of an adaptive block-based non-local means algorithm for repairing depth image holes. Furthermore, the proposed algorithm’s performance are evaluated using both the Middlebury stereo matching dataset and a self-constructed RGB-D dataset, with performance assessment being carried out by comparing the algorithm against other methods using five metrics: RMSE, SSIM, PSNR, DE, and ALME. Finally, experimental results unequivocally demonstrate the innovative resolution of the parameter tuning complexity inherent in-depth image hole repair, effectively filling the holes, suppressing noise within depth images, enhancing image quality, and achieving elevated precision and accuracy, as affirmed by the attained results.

Funder

Zhejiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3