Reduced Calibration Strategy Using a Basketball for RGB-D Cameras

Author:

Roman-Rivera Luis-RogelioORCID,Sotelo-Rodríguez Israel,Pedraza-Ortega Jesus CarlosORCID,Aceves-Fernandez Marco AntonioORCID,Ramos-Arreguín Juan ManuelORCID,Gorrostieta-Hurtado EfrénORCID

Abstract

RGB-D cameras produce depth and color information commonly used in the 3D reconstruction and vision computer areas. Different cameras with the same model usually produce images with different calibration errors. The color and depth layer usually requires calibration to minimize alignment errors, adjust precision, and improve data quality in general. Standard calibration protocols for RGB-D cameras require a controlled environment to allow operators to take many RGB and depth pair images as an input for calibration frameworks making the calibration protocol challenging to implement without ideal conditions and the operator experience. In this work, we proposed a novel strategy that simplifies the calibration protocol by requiring fewer images than other methods. Our strategy uses an ordinary object, a know-size basketball, as a ground truth sphere geometry during the calibration. Our experiments show comparable results requiring fewer images and non-ideal scene conditions than a reference method to align color and depth image layers.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference51 articles.

1. Killingfusion: Non-rigid 3d reconstruction without correspondences;Slavcheva;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017

2. High-speed structured light based 3D scanning using an event camera

3. Enhanced computer vision with microsoft kinect sensor: A review;Han;IEEE Trans. Cybern.,2013

4. A Survey on 3D Cameras: Metrological Comparison of Time-of-Flight, Structured-Light and Active Stereoscopy Technologies;Giancola,2018

5. Intel realsense stereoscopic depth cameras;Keselman;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3