Research on High-Performance Fourier Transform Algorithms Based on the NPU

Author:

Li Qing12,Zuo Decheng1,Feng Yi1,Wen Dongxin1

Affiliation:

1. Faculty of Computing, Harbin Institute of Technology, Harbin 150001, China

2. Jiangsu Automation Research Institute, Lianyungang 222006, China

Abstract

Backpack computers require powerful, intelligent computing capabilities for field wearables while taking energy consumption into careful consideration. A recommended solution for this demand is the CPU + NPU-based SoC. In many wearable intelligence applications, the Fourier Transform is an essential, computationally intensive preprocessing task. However, due to the unique structure of the NPU, the conventional Fourier Transform algorithms cannot be applied directly to it. This paper proposes two NPU-accelerated Fourier Transform algorithms that leverage the unique hardware structure of the NPU and provides three implementations of those algorithms, namely MM-2DFT, MV-2FFTm, and MV-2FFTv. Then, we benchmarked the speed and energy efficiency of our algorithms for the gray image edge filtering task on the Huawei Atlas200I-DK-A2 development kits against the Cooley-Tukey algorithm running on CPU and GPU platforms. The experiment results reveal MM-2DFT outperforms OpenCL-based FFT on NVIDIA Tegra X2 GPU for small input sizes, with a 4- to 8-time speedup. As the input image resolution exceeds 2048, MV-2FFTv approaches GPU computation speed. Additionally, two scenarios were tested and analyzed for energy efficiency, revealing that cube units of the NPU are more energy efficient. The vector and CPU units are better suited for sparse matrix multiplication and small-scale inputs, respectively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3