Affiliation:
1. School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
Abstract
Accurate unmanned aerial vehicle (UAV) trajectory tracking is crucial for the successful execution of UAV missions. Traditional global positioning system (GPS) methods face limitations in complex environments, and visual observation becomes challenging with distance and in low-light conditions. To address this challenge, we propose a comprehensive framework for UAV trajectory verification, integrating a range-based ultra-wideband (UWB) positioning system and advanced image processing technologies. Our key contribution is the development of the Spatial Trajectory Enhanced Attention Mechanism (STEAM), a novel attention module specifically designed for analyzing and classifying UAV trajectory patterns. This system enables real-time UAV trajectory tracking and classification, facilitating swift and accurate assessment of adherence to predefined optimal trajectories. Another major contribution of our work is the integration of a UWB system for precise UAV location tracking, complemented by our advanced image processing approach that includes a deep neural network (DNN) for interpolating missing data from images, thereby significantly enhancing the model’s ability to detect abnormal maneuvers. Our experimental results demonstrate the effectiveness of the proposed framework in UAV trajectory tracking, showcasing its robust performance irrespective of raw data quality. Furthermore, we validate the framework’s performance using a lightweight learning model, emphasizing both its computational efficiency and exceptional classification accuracy.
Funder
Ministry of Science and ICT
Korea Institute of Energy Technology Evaluation and Planning
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献