Reinforcement Learning Based Topology Control for UAV Networks

Author:

Yoo TaehoonORCID,Lee SangminORCID,Yoo KyeonghyunORCID,Kim HwangnamORCID

Abstract

The recent development of unmanned aerial vehicle (UAV) technology has shown the possibility of using UAVs in many research and industrial fields. One of them is for UAVs moving in swarms to provide wireless networks in environments where there is no network infrastructure. Although this method has the advantage of being able to provide a network quickly and at a low cost, it may cause scalability problems in multi-hop connectivity and UAV control when trying to cover a large area. Therefore, as more UAVs are used to form drone networks, the problem of efficiently controlling the network topology must be solved. To solve this problem, we propose a topology control system for drone networks, which analyzes relative positions among UAVs within a swarm, then optimizes connectivity among them in perspective of both interference and energy consumption, and finally reshapes a logical structure of drone networks by choosing neighbors per UAV and mapping data flows over them. The most important function in the scheme is the connectivity optimization because it should be adaptively conducted according to the dynamically changing complex network conditions, which includes network characteristics such as user density and UAV characteristics such as power consumption. Since neither a simple mathematical framework nor a network simulation tool for optimization can be a solution, we need to resort to reinforcement learning, specifically DDPG, with which each UAV can adjust its connectivity to other drones. In addition, the proposed system minimizes the learning time by flexibly changing the number of steps used for parameter learning according to the deployment of new UAVs. The performance of the proposed system was verified through simulation experiments and theoretical analysis on various topologies consisting of multiple UAVs.

Funder

Korea Institute of Energy Technology Evaluation and Planning

National Research Foundation of Korea funded by the Korean Government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3