The Effects of Running Kinematics on Peak Upper Trunk GPS-Measured Accelerations during Foot Contact at Different Running Speeds

Author:

Lawson Michael12ORCID,Naemi Roozbeh1ORCID,Needham Robert A.1,Chockalingam Nachiappan1ORCID

Affiliation:

1. School of Health Science and Wellbeing, Staffordshire University, Stoke-on-Trent ST4 2DE, UK

2. Middlesbrough Football Club, Middlesbrough TS3 6RS, UK

Abstract

The overall aim of this study was to determine the effects of running kinematics on the peak upper trunk segmental accelerations captured with an accelerometer embedded in a commonly used GPS device. Thirteen male participants (age: 27 ± 3.7 years, height: 1.81 ± 0.06 m, mass: 82.7 ± 6.2 kg) with extensive running experience completed a single trial of treadmill running (1 degree inclination) for 40 s at nine different speeds ranging from 10 to 18 km/h at 1 km/h increments. Three-dimensional peak upper trunk acceleration values were captured via a GPS device containing a tri-axial accelerometer. Participants’ running kinematics were calculated from the coordinate data captured by an 18-camera motion capture system. A series of generalized linear mixed models were employed to determine the effects of the kinematic variables on the accelerometer acceleration peaks across the key gait phases of foot contact. Results showed that running kinematics had significant effects on peak accelerometer-measured accelerations in all axes (p < 0.05). Overall, peak segment velocities had a larger effect than joint/segment kinematics on resultant (F values = 720.9/54.2), vertical (F values = 149.8/48.1) and medial–lateral (F values = 55.4/33.4) peak accelerometer accelerations. The largest effect on peak accelerometer accelerations were observed during the impact subphase of foot contact at the adduction/abduction velocity of the shank (F value = 129.2, coefficient = −0.03) and anterior/posterior velocity of the pelvis (F value = 58.9, coefficient = 0.01). Axis-dependent effects of running kinematics were also observed, specifically at the trunk segment in the vertical and anterior–posterior peak accelerometer accelerations. This study showed the intersegmental relationship between joint/segment kinematics, segment velocities and the resulting peak accelerations of the upper trunk during running over several speeds. These findings provide insights into the lower body’s GRF attenuation capacity and its contribution to trunk stability whilst running.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3