A GaN-Based Wireless Monitoring System for High-Temperature Applications

Author:

Hassan Ahmad,Ali Mohamed,Trigui Aref,Savaria Yvon,Sawan MohamadORCID

Abstract

A fully-integrated data transmission system based on gallium nitride (GaN) high-electron-mobility transistor (HEMT) devices is proposed. This system targets high-temperature (HT) applications, especially those involving pressure and temperature sensors for aerospace in which the environmental temperature exceeds 350 °C. The presented system includes a front-end amplifying the sensed signal (gain of 50 V/V), followed by a novel analog-to-digital converter driving a modulator exploiting the load-shift keying technique. An oscillation frequency of 1.5 MHz is used to ensure a robust wireless transmission through metallic-based barriers. To retrieve the data, a new demodulator architecture based on digital circuits is proposed. A 1 V amplitude difference can be detected between a high-amplitude (data-on) and a low-amplitude (data-off) of the received modulated signal. Two high-voltage supply levels (+14 V and −14 V) are required to operate the circuits. The layout of the proposed system was completed in a chip occupying 10.8 mm2. The HT characterization and modeling of integrated GaN devices and passive components are performed to ensure the reliability of simulation results. The performance of the various proposed building blocks, as well as the whole system, have been validated by simulation over the projected wide operating temperature range (25–350 °C).

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

CMC Microsystems

National Research Council Canada

Airbus

SAFRAN

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-temperature flexible electric Piezo/pyroelectric bifunctional sensor with excellent output performance based on thermal-cyclized electrospun PAN/Zn(Ac)2 nanofiber mat;Nano Energy;2024-06

2. Two-Wire Analog Interfaces of Capacitance Sensors Based on GaAs Transistors;2024 6th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE);2024-02-29

3. Mathematical Model-Based Analysis and Mitigation of GaN Switching Oscillations;IEEE Access;2024

4. Methodology of Circuit Modeling of Charge-Sensitive Amplifiers Based on Wide-Band-Gap (GaAs, GaN) D-FETs;2023 IEEE XVI International Scientific and Technical Conference Actual Problems of Electronic Instrument Engineering (APEIE);2023-11-10

5. Intelligent Path Planning Technologies of Underwater Vehicles: a Review;Journal of Intelligent & Robotic Systems;2023-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3