The Effects of Hybrid Steel/Basalt Fibers on the Durability of Concrete Pavement against Freeze–Thaw Cycles

Author:

Yu Jianqiao12,Yi Zijing3,Zhang Zhigang12ORCID,Liu Dawei12,Ran Junxin12

Affiliation:

1. School of Civil Engineering, Chongqing University, Chongqing 400045, China

2. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Ministry of Education, Chongqing 400045, China

3. Undergraduate School, Chongqing University, Chongqing 400045, China

Abstract

Freeze–thaw (F-T) is one of the principal perils afflicting concrete pavements. A remedial strategy used during construction encompasses the integration of hybrid fibers into the concrete matrix. An extant research gap persists in elucidating the damage mechanism inherent in hybrid steel fiber (SF)- and basalt fiber (BF)-reinforced concrete subjected to F-T conditions. This paper empirically investigated the durability performance of hybrid fiber-reinforced concrete (HFRC) subjected to F-T cycles. The impact of SF/BF hybridization on mass loss, abrasion resistance, compressive strength, flexural strength, damaged layer thickness, and the relative dynamic modulus of elasticity (RDME) was examined. The damage mechanism was explored using micro-hardness and SEM analysis. The results indicate that incorporating hybrid SF/BF effectively enhances the F-T resistance of concrete and prolongs the service life of concrete pavement. The mechanisms underlying these trends can be traced back to robust bonding at the fiber/matrix interface. Randomly dispersed SFs and BFs contribute to forming a three-dimensional spatial structure within the concrete matrix, suppressing the expansion of internal cracks caused by accumulated hydrostatic pressure during the F-T cycle. This research outcome establishes a theoretical foundation for the application of HFRC to concrete pavements in cold regions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3