Affiliation:
1. College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China
2. Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, China
3. Xinjiang Remote Measurement Engineering Technology Co., Ltd., Changji 831100, China
Abstract
Based on mortar composites with a low water–cement ratio, the effects of hybrid aramid fiber (AF), calcium sulfate whisker (CSW), and basalt fiber (BF) on their mechanical properties and wear resistance were studied, and the correlation between wear resistance and compressive strength are discussed. A microstructure analysis was conducted through scanning electron microscopy (SEM) and the nitrogen-adsorption method (BET). The research results show that compared with the control group, the compressive strength, flexural strength, and wear resistance of the hybrid AF, CSW, and BF mortar composites with a low water–cement ratio increased by up to 33.6%, 32%, and 40.8%, respectively; there is a certain linear trend between wear resistance and compressive strength, but the discreteness is large. The microstructure analysis shows that CSW, AF, and BF mainly dissipate energy through bonding, friction, mechanical interlocking with the mortar matrix, and their own pull out and fracture, thereby enhancing and toughening the mortar. A single doping of CSW and co-doping of CSW and AF can refine the pore structure of the mortar, making the mortar structure more compact.
Funder
Xinjiang Uygur Autonomous Region Natural Science Foundation project
National Natural Science Foundation of China