Molecular Dynamics Simulation of the Effect of Low Temperature on the Properties of Lignocellulosic Amorphous Region

Author:

Jiang Xuewei1ORCID,Wang Wei1,Guo Yuanyuan1,Dai Min1

Affiliation:

1. College of Engineering and Technology, Northeast Forestry University, Harbin 150040, China

Abstract

In this paper, a molecular model of cellulose amorphous region-water molecule was developed using Materials Studio software by applying the molecular dynamics method. The effect of low temperature on the properties of the lignocellulosic amorphous region, the main component of wood, was investigated in an attempt to explain the macroscopic property changes from a microscopic perspective and to provide a theoretical basis for the safe use of wood and wood products in low-temperature environments and other related areas of research. Dynamic simulations were carried out at 20 °C, 0 °C, −30 °C, −70 °C, −110 °C and −150 °C for the NPT combinations to obtain the energy, volume, density, and hydrogen bonding change trends of their models, respectively. The changes in the microstructure of the water molecule–cellulose amorphous region model were analyzed, and the mechanical properties were calculated. The results showed that the interaction between the amorphous cellulose region and water molecules was enhanced as the temperature decreased, the density of the models increased, and the volume decreased. The number of total hydrogen bonds and the number of hydrogen bonds between water molecule–cellulose chains increased for each model, and the decrease in temperature made the cellulose molecular activities weaker. The values of G, E, and K increased with the decrease in temperature, and K/G decreased with the decrease in temperature. It shows that the decrease in temperature is beneficial to enhance the mechanical properties of the amorphous region of cellulose and increases the stiffness of the material. However, the toughness and plasticity decrease when the temperature is too low.

Funder

Fundamental Research Funds for the Central Universities

Scientific Research Foundation for the Returned Overseas Chinese Scholars of Heilongjiang Province

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3