A Study on the Effects of Vacuum, Nitrogen, and Air Heat Treatments on Single-Chain Cellulose Based on a Molecular Dynamics Simulation

Author:

Hua Youna1,Wang Wei1,Gao Jingying1,Li Ning1,Qu Zening1ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China

Abstract

Employing molecular dynamics software, three models—vacuum–cellulose, nitrogen–cellulose, and air–cellulose—were built to clarify, via a microscopic perspective, the macroscopic changes in single-chain cellulose undergoing vacuum, nitrogen, and air heat treatments. Kinetic simulations were run following model equilibrium within the NPT system of 423, 443, 463, 483, and 503 K. The energy variations, cell parameters, densities, mean square displacements, hydrogen bonding numbers, and mechanical parameters were analyzed for the three models. The findings demonstrate that as the temperature climbed, the cellular characteristics among two models—the nitrogen and vacuum models—decreased and subsequently increased. The nitrogen model reached its lowest value at 443 K. In contrast, the vacuum model reached its minimum value at 463 K. The vacuum heat treatment may enhance the structural stability of the single-chain cellulose more effectively than the nitrogen and air treatments because it increases the number of hydrogen bonds within the cellulose chain and stabilizes the mean square displacement. Furthermore, the temperature has an impact on the mechanical characteristics of the cellulose amorphous zone; the maximum values of E and G for the vacuum and nitrogen models are found at 463 and 443 K, respectively. The Young’s modulus and shear modulus were consistently more significant for the vacuum model at either temperature, and the Poisson’s ratio was the opposite. Therefore, the vacuum heat treatment can better maintain wood stiffness and deformation resistance, thus improving wood utilization. These findings provide an essential theoretical basis for wood processing and modification, which can help optimize the heat treatment and enhance wood’s utilization and added value.

Funder

Natural Scientific Foundation of Heilongjiang Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3