Impact of Environmental Conditions and Seasonality on Ecosystem Transpiration and Evapotranspiration Partitioning (T/ET Ratio) of Pure European Beech Forest

Author:

Petrík PeterORCID,Zavadilová Ina,Šigut LadislavORCID,Kowalska NataliaORCID,Petek-Petrik Anja,Szatniewska Justyna,Jocher GeorgORCID,Pavelka MarianORCID

Abstract

Partitioning of evapotranspiration (ET) into transpiration (T) and residual evaporation (E) is a challenging but important task in order to assess the dynamics of increasingly scarce water resources in forest ecosystems. The T/ET ratio has been linked to the ecosystem water use efficiency of temperate forests, and thus is an important index for understanding utilization of water resources under global climate change. We used concurrent sap flow and eddy-covariance measurements to quantify the ET partitioning in pure European beech forest during the 2019–2020 period. The sap flow data were upscaled to stand level T and combined with stand level ET to calculate the T/ET ratio. We analysed intra-annual dynamics, the effect of seasonality and the impact of meteorological conditions on T, ET and T/ET. Annual T/ET of a pure European beech ecosystem was 0.48, falling at the lower end of reported global T/ET values for forest ecosystems. T/ET showed significant seasonal differences throughout spring (T/ET = 0.28), summer (T/ET = 0.62) and autumn (T/ET = 0.35). Air temperature (R2 = 0.45–0.63), VPD (R2 = 0.47–0.6) and PAR (R2 = 0.32–0.63) affected the daily dynamics of T, ET and T/ET; however, soil water content (SWC) had no significant effect. Mature European beech trees showed more anisohydric behaviour and relatively stable T/ET, even under decreasing SWC. The results improve the understanding of ecosystem scale T, ET and T/ET intra-annual dynamics and environmental constraints in anisohydric mature European beech.

Funder

Ministry of Education, Youth and Sports of CR

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3