Prediction of the Interface Behavior of a Steel/CFRP Hybrid Part Manufactured by Stamping

Author:

Ryu Jae-Chang1,Lee Chan-Joo2,Shin Do-Hoon3,Ko Dae-Cheol1ORCID

Affiliation:

1. Department of Nanomechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea

2. Precision Manufacturing & Control R&D Group, Korea Institute of Industrial Technology, Jinju 52845, Republic of Korea

3. Aerospace Engineering Team, Koreanair R&D Center, Busan 46712, Republic of Korea

Abstract

Carbon fiber-reinforced plastic (CFRP) is a lightweight material. The automotive industry has focused on producing a steel/CFRP hybrid part to reduce overall weight. After manufacturing, delamination can occur at the interface between the CFRP and steel owing to the hybrid part constituting dissimilar materials. However, most studies have focused only on designing the manufacturing processes for the hybrid part or evaluating the adhesive used at the interface. Therefore, it is necessary to predict the behavior of the interface after demolding the hybrid part. This study aimed to predict the interface behavior of a steel/CFRP hybrid part by considering its forming and cohesive properties. First, double cantilever beam (DCB) and end-notched flexure (ENF) tests were performed to obtain cohesive parameters, such as energy release rate of modes I and II (GI, GII). The experimentally obtained properties were applied to the bonding area of the hybrid part. Subsequently, a forming simulation was performed to obtain the stress of the steel blank in the hybrid part. The stress distribution after forming was utilized as the initial condition for spring-back simulation. Finally, the interface behavior of the hybrid part was predicted by a spring-back simulation. The simulation was conducted using the residual stress of steel outer and the cohesive properties on the interface, without the application of any external forces. The cases of spring-back simulation were divided as delamination occurrence and attached state. The simulation results for prediction of delamination occurrence and bonding showed good agreement in both cases with experimental ones. The proposed method would contribute to expanding the manufacturing of the hybrid part by stamping and reducing the manufacturing cost by prediction of delamination occurrence.

Funder

National Research Foundation of Korea

Ministry of Trade, Industry & Energy

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3