Durability and Mechanical Properties of Concrete Reinforced with Basalt Fiber-Reinforced Polymer (BFRP) Bars: Towards Sustainable Infrastructure

Author:

Mohamed Osama AhmedORCID,Al Hawat Waddah,Keshawarz Mohammad

Abstract

Reducing the fingerprint of infrastructure has become and is likely to continue to be at the forefront of stakeholders’ interests, including engineers and researchers. It necessary that future buildings produce minimal environmental impact during construction and remain durable for as long as practicably possible. The use of basalt fiber-reinforced polymer (BFRP) bars as a replacement for carbon steel is reviewed in this article by examining the literature from the past two decades with an emphasis on flexural strength, serviceability, and durability. The provisions of selected design and construction guides for flexural members are presented, compared, and discussed. The bond of BFRP bars to the surrounding concrete was reportedly superior to carbon steel when BFRP was helically wrapped and sand coated. Experimental studies confirmed that a bond coefficient kb = 0.8, which is superior to carbon steel, may be assumed for sand-coated BFRP ribbed bars that are helically wrapped, as opposed to the conservative value of 1.4 suggested by ACI440.1R-15. Code-based models overestimate the cracking load for BFRP-reinforced beams, but they underestimate the ultimate load. Exposure to an alkaline environment at temperatures as high as 60 °C caused a limited reduction in bond strength of BFRP. The durability of BFRP bars is influenced by the type of resin and sizing used to produce the bars.

Funder

Office of Research and Sponsored Programs (ORSP), Abu Dhabi University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3