Cogeneration Economics for Greenhouses in Europe

Author:

Tataraki Kalliopi,Giannini Eugenia,Kavvadias Konstantinos,Maroulis ZachariasORCID

Abstract

Cogeneration is a cost-effective technology, and modern greenhouses are considered one of the best applications for it due to their energy intensity. Taking into account that in such cases the production cost is significantly affected by the cost of energy, the potential of combined heat and power (CHP) has already been examined and proved in practice in some European countries, with the Netherlands being the most representative example. In this study, a comparative investigation of the greenhouse energy cost in all European countries is presented through the use of a combined cooling heat and power (CCHP) system. Using actual historical data spanning a decade, a total overview of the European level is given regarding greenhouse thermal requirements and CCHP energy costs for the cultivation of products with an accepted temperature cultivation range 20 ± 5 °C. By consulting (a) the available daily historical meteorological data for the 2008–2018 period, (b) the recorded actual electricity and natural gas prices for the 2008–2018 period, and (c) the technical characteristics of the CCHP system, the annual heating and cooling requirements of greenhouses are determined for all EU countries. Assuming a cogeneration unit with an internal combustion engine (ICE) as a prime mover, as well as a single-effect absorption chiller for the production of useful cooling, the unitary cost of energy is estimated along with the annual cost for heating and cooling per unit cultivation area. Using this methodology, the economic efficiency of cogeneration in greenhouses is assessed for the selected 10-year period, allowing the identification of the countries that benefit the most from this technology. The results indicate that the spark ratio (e.g., the electricity to natural gas price ratio) is the most crucial parameter for greenhouse costs. For countries where the ratio is larger than 3, greenhouses can even result in an extra cashflow instead of energy expenditures. The most favorable conditions for cogeneration use were found in Italy and the United Kingdom with an average spark ratio more than 4, resulting in an annual total cost of heating energy close to −7 €/m2 per year. On the other hand, cogeneration proved not to be a cost-efficient system in Sweden and Finland as a result of significantly high greenhouse energy requirements.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3