Cumulative Energy Demand and Carbon Footprint of the Greenhouse Cultivation System

Author:

Grabarczyk RobertORCID,Grabarczyk SławomirORCID

Abstract

The paper describes the influence of horticultural production in greenhouses under Polish climate conditions on energy consumption, contributing to greenhouse gas emissions and global warming. Four scenarios were studied, two of which were non-renewable fuels: coal and natural gas, while the other two were renewable energy sources: wood pellets and wood chips, to identify opportunities for reducing energy costs and greenhouse gas emissions. Cumulative energy demand was defined to assess these four scenarios. The environmental impact was determined using the carbon footprint of the principal greenhouse gases emitted and using CO2 as the reference gas (CO2-equivalents). Renewable energy sources in greenhouse production can reduce the cumulative energy demand by 83.3% and greenhouse gas emissions by 95% compared to the coal-burning scenario. The presented research results relate to a greenhouse intended for growing flowers in pots, which has not been conducted so far. The article also updates the data on the environmental impact of crops grown in greenhouses located in Poland. The study provides important information for horticultural producers, mainly due to increasing competition and consumer awareness of the origin of products. Renewable energy sources in horticulture reveal a great potential in the reduction in greenhouse gases, and thus may become an inspiration to look for new solutions in this area.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3