Environmental Sustainability of Greenhouse Covering Materials

Author:

Maraveas ChrysanthosORCID

Abstract

The fundamental objective of the review article was to explore the ecological sustainability of greenhouse covering material based on the following themes; considerations for greenhouse materials, properties of polymers and glass, additives, fillers, stabilizers and reinforcements, performance, Ultraviolet (UV) transmittance, phase change materials (PCMs), and environmental sustainability. A comparison of various polymers (polyvinyl chloride (PVC), acrylic, D-polymer, Linear low-density polyethylene (LLDPE), polyolefins), and silica glasses illustrated that each type of greenhouse cladding material has its unique merits and limitations. The performance of silica glasses, PVC, polyolefins was influenced by weather, greenhouse design, plant under cultivation, percentage UV transmittance, incorporation of additives and stabilizers, reinforcements, and integration of photovoltaic panels into the greenhouse roof among other factors. Polymers can be customized to achieve 0%UV transmittance, slow-insecticide release, and anti-microbial properties. In contrast, glass materials are preferred based on suitable photosynthetically active radiation (PAR) transmittance and near-infrared (NIR) reflection and less risk of photo-oxidation. From an ecological perspective, polymers can be recycled via mechanical and chemical recycling, closed-loop cycling, and polymerization of bio-based feedstock. However, post-consumer plastic films do not possess the same optical and energy properties as virgin polymers. The combined benefits of different polymers suggest that these materials could be adopted on a large scale over the long-term.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3