A Novel Method for Thermal Modelling of Photovoltaic Modules/Cells under Varying Environmental Conditions

Author:

Abdulrazzaq Ali KareemORCID,Plesz Balázs,Bognár György

Abstract

Temperature has a significant effect on the photovoltaic module output power and mechanical properties. Measuring the temperature for such a stacked layers structure is impractical to be carried out, especially when we talk about a high number of modules in power plants. This paper introduces a novel thermal model to estimate the temperature of the embedded electronic junction in modules/cells as well as their front and back surface temperatures. The novelty of this paper can be realized through different aspects. First, the model includes a novel coefficient, which we define as the forced convection adjustment coefficient to imitate the module tilt angle effect on the forced convection heat transfer mechanism. Second, the new combination of effective sub-models found in literature producing a unique and reliable method for estimating the temperature of the PV modules/cells by incorporating the new coefficient. In addition, the paper presents a comprehensive review of the existing PV thermal sub-models and the determination expressions of the related parameters, which all have been tested to find the best combination. The heat balance equation has been employed to construct the thermal model. The validation phase shows that the estimation of the module temperature has significantly improved by introducing the novel forced convection adjustment coefficient. Measurements of polycrystalline and amorphous modules have been used to verify the proposed model. Multiple error indication parameters have been used to validate the model and verify it by comparing the obtained results to those reported in recent and most accurate literature.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3