Mathematical Modeling, Parameters Effect, and Sensitivity Analysis of a Hybrid PVT System

Author:

Ahmed Md Tofael1ORCID,Rashel Masud Rana1ORCID,Abdullah-Al-Wadud Mohammad2,Hoque Tania Tanzin1,Janeiro Fernando M.13ORCID,Tlemcani Mouhaydine1ORCID

Affiliation:

1. Instrumentation and Control Laboratory, Department of Mechatronics Engineering, University of Evora, 7000-671 Evora, Portugal

2. Department of Software Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

3. Institute of Telecommunications, Instituto Superior Tecnico, 1049-001 Lisbon, Portugal

Abstract

Hybrid PVT solar systems offer an innovative approach that allows solar energy to be used to simultaneously generate thermal and electrical energy. It is still a challenge to develop an energy-efficient hybrid PVT system. The aim of this work is to develop a mathematical model, investigate the system’s performance based on parameters, include sensitivity analysis in the upper layer mainly photovoltaic part, and provide an efficient and innovative system. Performance analysis of the hybrid system is obtained by establishing a mathematical model and efficiency analysis. The electrical model and thermal model of the hybrid system is also obtained by appropriate and complete mathematical modeling. It establishes a good connection of the system in the context of electrical analysis and power generation. The parameters variation impact and sensitivity analysis of the most important parameters, namely, irradiance, ambient temperature, panel temperature, wind speed, and humidity in the PV panel section, are also obtained using a MATLAB model. The results show the effective increase or decrease in the electrical power and sensitiveness in the output of the system due to this modification. Related MPP values as a result of these parameters variation and their impact on the overall output of the hybrid PVT system are also analyzed.

Funder

King Saud University, Saudi Arabia and FCT, Portugal

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3