Edge Computing and Blockchain for Quick Fake News Detection in IoV

Author:

Xiao YonggangORCID,Liu Yanbing,Li Tun

Abstract

The dissemination of false messages in Internet of Vehicles (IoV) has a negative impact on road safety and traffic efficiency. Therefore, it is critical to quickly detect fake news considering news timeliness in IoV. We propose a network computing framework Quick Fake News Detection (QcFND) in this paper, which exploits the technologies from Software-Defined Networking (SDN), edge computing, blockchain, and Bayesian networks. QcFND consists of two tiers: edge and vehicles. The edge is composed of Software-Defined Road Side Units (SDRSUs), which is extended from traditional Road Side Units (RSUs) and hosts virtual machines such as SDN controllers and blockchain servers. The SDN controllers help to implement the load balancing on IoV. The blockchain servers accommodate the reports submitted by vehicles and calculate the probability of the presence of a traffic event, providing time-sensitive services to the passing vehicles. Specifically, we exploit Bayesian Network to infer whether to trust the received traffic reports. We test the performance of QcFND with three platforms, i.e., Veins, Hyperledger Fabric, and Netica. Extensive simulations and experiments show that QcFND achieves good performance compared with other solutions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference44 articles.

1. Message Sets for Vehicular Communications;Lin,2015

2. Using trust model to ensure reliable data acquisition in VANETs

3. Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 3: Specifications of Decentralized Environmental Notification Basic Service,2019

4. Anonymous Counting Problem in Trust Level Warning System for VANET

5. Adaptive trust and privacy management framework for vehicular networks

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3