Publisher
Springer Science and Business Media LLC
Reference19 articles.
1. Gaurav, A., Gupta, B. B., Castiglione, A., Psannis, K., & Choi, C. (2020). A novel approach for fake news detection in vehicular ad-hoc network (vanet). In International conference on computational data and social networks (pp. 386–397). Springer.
2. Hakak, S., Alazab, M., Khan, S., Gadekallu, T. R., Maddikunta, P. K. R., & Khan, W. Z. (2021). An ensemble machine learning approach through effective feature extraction to classify fake news. Future Generation Computer Systems, 117, 47–58.
3. Hakak, S., Khan, W. Z., Bhattacharya, S., Thippa Reddy, G., & Raymond Choo, K.-K.: Propagation of fake news on social media: challenges and opportunities. In Computational data and social networks: 9th international conference, CSoNet 2020, Dallas, December 11–13, 2020, Proceedings 9 (pp. 345–353). Springer International Publishing.
4. Herzig, A., Lorini, E., & Pearce, D. (2019). Social intelligence. AI & Society, 34(4), 689–689.
5. Martens, J. (2020) Machine Learning Studio (Classic) Documentation—Azure. Microsoft Docs. Accessed April 22, 2020. https://docs.microsoft.com/en-us/azure/machine-learning/studio/