LoRa 2.4 GHz Communication Link and Range

Author:

Janssen ThomasORCID,BniLam NooriORCID,Aernouts MichielORCID,Berkvens RafaelORCID,Weyn MaartenORCID

Abstract

Recently, Semtech has released a Long Range (LoRa) chipset which operates at the globally available 2.4 GHz frequency band, on top of the existing sub-GHz, km-range offer, enabling hardware manufacturers to design region-independent chipsets. The SX1280 LoRa module promises an ultra-long communication range while withstanding heavy interference in this widely used band. In this paper, we first provide a mathematical description of the physical layer of LoRa in the 2.4 GHz band. Secondly, we investigate the maximum communication range of this technology in three different scenarios. Free space, indoor and urban path loss models are used to simulate the propagation of the 2.4 GHz LoRa modulated signal at different spreading factors and bandwidths. Additionally, we investigate the corresponding data rates. The results show a maximum range of 133 km in free space, 74 m in an indoor office-like environment and 443 m in an outdoor urban context. While a maximum data rate of 253.91 kbit/s can be achieved, the data rate at the longest possible range in every scenario equals 0.595 kbit/s. Due to the configurable bandwidth and lower data rates, LoRa outperforms other technologies in the 2.4 GHz band in terms of communication range. In addition, both communication and localization applications deployed in private LoRa networks can benefit from the increased bandwidth and localization accuracy of this system when compared to public sub-GHz networks.

Funder

Fonds Wetenschappelijk Onderzoek

Horizon 2020

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Communication Perspective of Wildfire Detection and Suppression: A Survey of Technologies, Requirements, and Future Directions;2023 15th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT);2023-10-30

2. Skilog: A Smart Sensor System for Performance Analysis and Biofeedback in Ski Jumping;2023 IEEE Biomedical Circuits and Systems Conference (BioCAS);2023-10-19

3. Opportunities and Challenges of LoRa 2.4 GHz;IEEE Communications Magazine;2023-10

4. LoRa Communication Using TVWS Frequencies: Range and Data Rate;Future Internet;2023-08-14

5. Evaluating Energy Consumption and Maximum Communication Distance for SX1280 LoRa Transceiver at 2.4 GHz towards Adaptive Networks;2023 19th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob);2023-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3