A Critical Review of the Propagation Models Employed in LoRa Systems

Author:

Azevedo Joaquim Amândio1ORCID,Mendonça Fábio23ORCID

Affiliation:

1. Center for Research in Mathematics and Applications (CIMA), Faculty of Exact Sciences and Engineering, University of Madeira, 9020-105 Funchal, Portugal

2. Faculty of Exact Sciences and Engineering, University of Madeira, 9020-105 Funchal, Portugal

3. Interactive Technologies Institute (ITI/LARSyS and ARDITI), Edif. Madeira Tecnopolo, Caminho da Penteada Piso-2, 9020-105 Funchal, Portugal

Abstract

LoRa systems are emerging as a promising technology for wireless sensor networks due to their exceptional range and low power consumption. The successful deployment of LoRa networks relies on accurate propagation models to facilitate effective network planning. Therefore, this review explores the landscape of propagation models supporting LoRa networks. Specifically, we examine empirical propagation models commonly employed in communication systems, assessing their applicability across various environments such as outdoor, indoor, and within vegetation. Our investigation underscores the prevalence of logarithmic decay in most empirical models. In addition, we survey the relationship between model parameters and environmental factors, clearing their nuanced interplay. Analyzing published measurement results, we extract the log-distance model parameters to decipher environmental influences comprehensively. Drawing insights from published measurement results for LoRa, we compare them with the model’s outcomes, highlighting successes and limitations. We additionally explore the application of multi-slope models to LoRa measurements to evaluate its effectiveness in enhancing the accuracy of path loss prediction. Finally, we propose new lines for future research in propagation modelling to improve empirical models.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3