Land-Use/Land-Cover Changes and Their Impact on Surface Urban Heat Islands: Case Study of Kandy City, Sri Lanka

Author:

Dissanayake ,Morimoto ,Ranagalage ,Murayama

Abstract

An urban heat island (UHI) is a phenomenon that shows a higher temperature in urban areas compared to surrounding rural areas due to the impact of impervious surface (IS) density, and other anthropogenic activities including changes of land use/land cover (LULC). The purpose of this research is to examine the spatiotemporal land-use/land-cover changes and their impact on the surface UHI (SUHI) in Kandy City, Sri Lanka, using Landsat data and geospatial techniques. LULC classification was made by using a pixel-oriented supervised classification method, and LULC changes were computed by using a cross-cover comparison. The SUHI effect was discussed mainly through the variation of land-surface temperature (LST) over persistent IS and newly added IS. The study showed the dynamics of each LULC and its role in the SUHI. The results showed that IS areas expanded from 529 to 1514 ha (2.3% to 6.7% of the total land area) between 1996 and 2006, and to 5833 ha (23.9% of the total land area) in 2017, with an annual growth rate of 11.1% per year from 1996 to 2006 and 12.2% per year from 2006 to 2017. A gradually declining trend was observed in forest areas. Persistent IS reported the highest mean LST areas compared to newly added IS. The mean LST difference between persistent IS and newly added IS was 1.43 °C over the study period. This is because areas of persistent IS are typically surrounded by IS even in their neighborhoods, whereas areas of newly added IS occur at the edges of the city and are, therefore, cooled by the surrounding nonurban surfaces. This calls for appropriate green-oriented landscape-management methods to mitigate the impact of the SUHI in Kandy City. The findings of the study showed that LULC changes and their effect on the SUHI from 1996 to 2017 made a significant contribution to long records of change dynamics.

Publisher

MDPI AG

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3