Quantifying Surface Urban Heat Island Formation in the World Heritage Tropical Mountain City of Sri Lanka

Author:

Ranagalage Manjula,Dissanayake DMSLB,Murayama YujiORCID,Zhang Xinmin,Estoque Ronald C.,Perera ENC,Morimoto Takehiro

Abstract

Presently, the urban heat island (UHI) phenomenon, and its adverse impacts, are becoming major research foci in various interrelated fields due to rapid changes in urban ecological environments. Various cities have been investigated in previous studies, and most of the findings have facilitated the introduction of proper mitigation measures to overcome the negative impact of UHI. At present, most of the mountain cities of the world have undergone rapid urban development, and this has resulted in the increasing surface UHI (SUHI) phenomenon. Hence, this study focuses on quantifying SUHI in Kandy City, the world heritage tropical mountain city of Sri Lanka, using Landsat data (1996 and 2017) based on the mean land surface temperature (LST), the difference between the fraction of impervious surfaces (IS), and the fraction of green space (GS). Additionally, we examined the relationship of LST to the green space/impervious surface fraction ratio (GS/IS fraction ratio) and the magnitude of the GS/IS fraction ratio. The SUHI intensity (SUHII) was calculated based on the temperature difference between main land use/cover categories and the temperature difference between urban-rural zones. We demarcated the rural zone based on the fraction of IS recorded, <10%, along with the urban-rural gradient zone. The result shows a SUHII increase from 3.9 °C in 1996 to 6.2 °C in 2017 along the urban-rural gradient between the urban and rural zones (10 < IS). These results relate to the rapid urban expansion of the study areas from 1996 to 2017. Most of the natural surfaces have changed to impervious surfaces, causing an increase of SUHI in Kandy City. The mean LST has a positive relationship with the fraction of IS and a negative relationship with the fraction of GS. Additionally, the GS/IS fraction ratio shows a rapid decline. Thus, the findings of this study can be considered as a proxy indicator for introducing proper landscape and urban planning for the World Heritage tropical mountain city of Kandy in Sri Lanka.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3