Abstract
The bioelectrochemical methane production from acetate as a non-fermentable substrate, glucose as a fermentable substrate, and their mixture were investigated in an anaerobic sequential batch reactor exposed to an electric field. The electric field enriched the bulk solution with exoelectrogenic bacteria (EEB) and electrotrophic methanogenic archaea, and promoted direct interspecies electron transfer (DIET) for methane production. However, bioelectrochemical methane production was dependent on the substrate characteristics. For acetate as the substrate, the main electron transfer pathway for methane production was DIET, which significantly improved methane yield up to 305.1 mL/g chemical oxygen demand removed (CODr), 77.3% higher than that in control without the electric field. For glucose, substrate competition between EEB and fermenting bacteria reduced the contribution of DIET to methane production, resulting in the methane yield of 288.0 mL/g CODr, slightly lower than that of acetate. In the mixture of acetate and glucose, the contribution of DIET to methane production was less than that of the single substrate, acetate or glucose, due to the increase in the electron equivalent for microbial growth. The findings provide a better understanding of electron transfer pathways, biomass growth, and electron transfer losses depending on the properties of substrates in bioelectrochemical methane production.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献