Unraveling Anaerobic Digestion Instability: A Simple Index Based on the Kinetic Balance of Biochemical Reactions

Author:

Jia Ru12,Song Young-Chae12ORCID,An Zhengkai12ORCID,Kim Keugtae3,Oa Seong-Wook4

Affiliation:

1. Department of Environmental Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea

2. Interdisciplinary Major of Ocean Renewable Energy Engineering, Busan 49112, Republic of Korea

3. Department of Biological and Environmental Science, Dongguk University, Gyeonggi 10326, Republic of Korea

4. School of Railroad Civil System Engineering, Woosong University, Daejeon 34606, Republic of Korea

Abstract

Restoration potential (RP) and deterioration potential (DP) were formulated to shed light on the kinetic balance between anaerobic biochemical reactions. RP is gauged by the ratio of the methanogenesis rate (MR) to the acidogenesis rate (AR), while the DP is the sum of the accumulation rate (AcR) and dilution rate (DR) of total VFAs, normalized using the AR. In an anaerobic digester for a mixture of pulverized food waste and liquified sewage sludge, an RP above 1.0 signifies a restorative state in the kinetic balance of anaerobic biochemical reactions across various operational phases, including startup and steady state, and shifts in organic loading rate. Conversely, a DP value of 0.0 or higher denotes a deterioration in the kinetic balance. The instability index (ISI), calculated as the DP to RP ratio, serves as an indicator of an anaerobic digestion state. When the standard deviation of ISI surpasses 0.2, it signifies instability in biochemical reactions; however, an average ISI below 0.05 indicates a stable digestion process. The study underscores the efficacy of RP, DP, and ISI as robust indicators for assessing the stability of anaerobic digestion based on the kinetics of biochemical reactions.

Funder

Korea Environment Industry & Technology Institute

Korean Ministry of Environment

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3