A New Comprehensive Indicator for Monitoring Anaerobic Digestion: A Principal Component Analysis Approach

Author:

Jia Ru12,Song Young-Chae12ORCID,An Zhengkai12ORCID,Kim Keugtae3,Lee Chae-Young4,Bae Byung-Uk5

Affiliation:

1. Department of Environmental Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea

2. Interdisciplinary Major of Ocean Renewable Energy Engineering, Busan 49112, Republic of Korea

3. Department of Biological and Environmental Science, Dongguk University, Gyeonggi 10326, Republic of Korea

4. Division of Civil, Environmental and Energy Engineering, The University of Suwon, Gyeonggi 18323, Republic of Korea

5. Department of Civil and Environmental Engineering, Daejeon University, Daejeon 34520, Republic of Korea

Abstract

This paper has proposed a comprehensive indicator based on principal component analysis (PCA) for diagnosing the state of anaerobic digestion. Various state and performance variables were monitored under different operational modes, including start-up, interruption and resumption of substrate supply, and impulse organic loading rates. While these individual variables are useful for estimating the state of anaerobic digestion, they must be interpreted by experts. Coupled indicators combine these variables with the effect of offering more detailed insights, but they are limited in their universal applicability. Time-series eigenvalues reflected the anaerobic digestion process occurring in response to operational changes: Stable states were identified by eigenvalue peaks below 1.0, and they had an average below 0.2. Slightly perturbed states were identified by a consistent decrease in eigenvalue peaks from a value of below 4.0 or by observing isolated peaks below 3.0. Disturbed states were identified by repeated eigenvalue peaks over 3.0, and they had an average above 0.6. The long-term persistence of these peaks signals an increasing kinetic imbalance, which could lead to process failure. Ultimately, this study demonstrates that time-series eigenvalue analysis is an effective comprehensive indicator for identifying kinetic imbalances in anaerobic digestion.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3