Differences in Performance of ASD and ADHD Subjects Facing Cognitive Loads in an Innovative Reasoning Experiment

Author:

Papaioannou Anastasia,Kalantzi Eva,Papageorgiou Christos C.,Korombili Kalliopi,Bokou AnastasiaORCID,Pehlivanidis ArtemiosORCID,Papageorgiou Charalabos C.,Papaioannou George

Abstract

We aim to investigate whether EEG dynamics differ in adults with ASD (Autism Spectrum Disorders) and ADHD (attention-deficit/hyperactivity disorder) compared with healthy subjects during the performance of an innovative cognitive task, Aristotle’s valid and invalid syllogisms, and how these differences correlate with brain regions and behavioral data for each subject. We recorded EEGs from 14 scalp electrodes (channels) in 21 adults with ADHD, 21 with ASD, and 21 healthy, normal subjects. The subjects were exposed in a set of innovative cognitive tasks (inducing varying cognitive loads), Aristotle’s two types of syllogism mentioned above. A set of 39 questions were given to participants related to valid–invalid syllogisms as well as a separate set of questionnaires, in order to collect a number of demographic and behavioral data, with the aim of detecting shared information with values of a feature extracted from EEG, the multiscale entropy (MSE), in the 14 channels (‘brain regions’). MSE, a nonlinear information-theoretic measure of complexity, was computed to extract a feature that quantifies the complexity of the EEG. Behavior-Partial Least Squares Correlation, PLSC, is the method to detect the correlation between two sets of data, brain, and behavioral measures. -PLSC, a variant of PLSC, was applied to build a functional connectivity of the brain regions involved in the reasoning tasks. Graph-theoretic measures were used to quantify the complexity of the functional networks. Based on the results of the analysis described in this work, a mixed 14 × 2 × 3 ANOVA showed significant main effects of group factor and brain region* syllogism factor, as well as a significant brain region* group interaction. There are significant differences between the means of MSE (complexity) values at the 14 channels of the members of the ‘pathological’ groups of participants, i.e., between ASD and ADHD, while the difference in means of MSE between both ASD and ADHD and that of the control group is not significant. In conclusion, the valid–invalid type of syllogism generates significantly different complexity values, MSE, between ASD and ADHD. The complexity of activated brain regions of ASD participants increased significantly when switching from a valid to an invalid syllogism, indicating the need for more resources to ‘face’ the task escalating difficulty in ASD subjects. This increase is not so evident in both ADHD and control. Statistically significant differences were found also in the behavioral response of ASD and ADHD, compared with those of control subjects, based on the principal brain and behavior saliences extracted by PLSC. Specifically, two behavioral measures, the emotional state and the degree of confidence of participants in answering questions in Aristotle’s valid–invalid syllogisms, and one demographic variable, age, statistically and significantly discriminate the three groups’ ASD. The seed-PLC generated functional connectivity networks for ASD, ADHD, and control, were ‘projected’ on the regions of the Default Mode Network (DMN), the ‘reference’ connectivity, of which the structural changes were found significant in distinguishing the three groups. The contribution of this work lies in the examination of the relationship between brain activity and behavioral responses of healthy and ‘pathological’ participants in the case of cognitive reasoning of the type of Aristotle’s valid and invalid syllogisms, using PLSC, a machine learning approach combined with MSE, a nonlinear method of extracting a feature based on EEGs that captures a broad spectrum of EEGs linear and nonlinear characteristics. The results seem promising in adopting this type of reasoning, in the future, after further enhancements and experimental tests, as a supplementary instrument towards examining the differences in brain activity and behavioral responses of ASD and ADHD patients. The application of the combination of these two methods, after further elaboration and testing as new and complementary to the existing ones, may be considered as a tool of analysis in helping detecting more effectively such types of disorders.

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3