Painful Cutaneous Electrical Stimulation vs. Heat Pain as Test Stimuli in Conditioned Pain Modulation

Author:

Enax-Krumova ElenaORCID,Plaga Ann-Christin,Schmidt Kimberly,Özgül Özüm S.,Eitner Lynn B.ORCID,Tegenthoff Martin,Höffken Oliver

Abstract

Different paradigms can assess the effect of conditioned pain modulation (CPM). The aim of the present study was to compare heat pain, as an often used test stimulus (TS), to painful cutaneous electrical stimulation (PCES), having the advantage of the additional recording of PCES-related evoked potentials. In 28 healthy subjects we applied heat and PCES at the dominant hand as test stimulus (TS) to compare the CPM-effect elicited by hand immersion into cold water (10 °C) as conditioning stimulus (CS). Subjects rated the pain intensity of TS at baseline, during and 5 min after CS application and additionally of CS, on a numerical rating scale (NRS) (0–100). The ‘early’ (during CS–before CS) and ‘late’ (after CS–before CS) CPM-effects were analyzed. Parallel to the PCES, the related evoked potentials were recorded via Cz to evaluate any changes in PCES-amplitudes. CS reduced significantly the pain intensity of both PCES and heat pain as TS. On a group level, the CPM-effect did not differ significantly between both paradigms. Both early and late CPM-effect based on PCES correlated significantly with the CS pain intensity (r = −0.630 and −0.503, respectively), whereas using heat pain the correlation was not significant. We found a significant reduction of PCES-amplitudes during CS, but this did not correlate with the PCES-induced pain intensity. Correlation with the CS painfulness (r = −0.464) did not achieve the significance level after Bonferroni correction. The extent of the CPM effects was similar in both testing paradigms at group level, despite intraindividual differences. Future studies should further elicit the exact mechanisms explaining the modality of these specific differences.

Funder

Deutsche Forschungsgemeinschaft

Deutsche Gesetzliche Unfallversicherung

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3