Author:
Jessen Julia,Höffken Oliver,Schwenkreis Peter,Tegenthoff Martin,Özgül Özüm Simal,Enax-Krumova Elena
Abstract
AbstractPosttraumatic headache (PTH) is common following traumatic brain injury and impacts quality of life. We investigated descending pain modulation as one possible mechanism for PTH and correlated it to clinical measures. Pain-related evoked potentials (PREP) were recorded in 26 PTH-patients and 20 controls after electrical stimulation at the right hand and forehead with concentric surface electrodes. Conditioned pain modulation (CPM) was assessed using painful cutaneous electric stimulation (PCES) on the right hand as test stimulus and immersion of the left hand into 10 °C-cold water bath as conditioning stimulus based on changes in pain intensity and in amplitudes of PCES-evoked potentials. All participants completed questionnaires assessing depression, anxiety, and pain catastrophising. PTH-patients reported significantly higher pain ratings during PREP-recording in both areas despite similar stimulus intensity at pain threshold. N1P1-amplitudes during PREP and CPM-assessment were lower in patients in both areas, but statistically significant only on the hand. Both, PREP-N1-latencies and CPM-effects (based on the N1P1-amplitudes and pain ratings) were similar in both groups. Patients showed significantly higher ratings for anxiety and depression, which did not correlate with the CPM-effect. Our results indicate generalized hyperalgesia for electrical stimuli in both hand and face in PTH. The lacking correlation between pain ratings and EEG parameters indicates different mechanisms of pain perception and nociception.
Publisher
Springer Science and Business Media LLC