Optimizing Motor Imagery Parameters for Robotic Arm Control by Brain-Computer Interface

Author:

Hayta ÜnalORCID,Irimia Danut ConstantinORCID,Guger ChristophORCID,Erkutlu İbrahim,Güzelbey İbrahim Halil

Abstract

Brain-Computer Interface (BCI) technology has been shown to provide new communication possibilities, conveying brain information externally. BCI-based robot control has started to play an important role, especially in medically assistive robots but not only there. For example, a BCI-controlled robotic arm can provide patients diagnosed with neurodegenerative diseases such as Locked-in syndrome (LIS), Amyotrophic lateral sclerosis (ALS), and others with the ability to manipulate different objects. This study presents the optimization of the configuration parameters of a three-class Motor Imagery (MI) -based BCI for controlling a six Degrees of Freedom (DOF) robotic arm in a plane. Electroencephalography (EEG) signals are recorded from 64 positions on the scalp according to the International 10-10 System. In terms of the resulting classification of error rates, we investigated twelve time windows for the spatial filter and classifier calculation and three time windows for the variance smoothing time. The lowest error rates were achieved when using a 3 s time window for creating the spatial filters and classifier, for a variance time window of 1.5 s.

Funder

Unitatea Executiva Pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii

Publisher

MDPI AG

Subject

General Neuroscience

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Brain–computer interfaces: the innovative key to unlocking neurological conditions;International Journal of Surgery;2024-08-14

2. Design of a Brain Controlled Robotic Arm: Initial Experimental Testing;2024 21st International Multi-Conference on Systems, Signals & Devices (SSD);2024-04-22

3. Functional Neuroimaging and Rehabilitation;Translational Neurorehabilitation;2024

4. Implementación de una interfaz cerebro computador para el efector final de un robot colaborativo UR3;I+ T+ C- Research, Technology and Science;2023-11-15

5. Comparison of Cloud Computing and TinyML Methods for Brain-Computer Interface in Motor Imagery Problems;2023 8th International Conference on Business and Industrial Research (ICBIR);2023-05-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3