MES-CTNet: A Novel Capsule Transformer Network Base on a Multi-Domain Feature Map for Electroencephalogram-Based Emotion Recognition

Author:

Du Yuxiao1ORCID,Ding Han1ORCID,Wu Min2,Chen Feng1,Cai Ziman1

Affiliation:

1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China

2. School of Automation, China University of Geosciences, Wuhan 430074, China

Abstract

Emotion recognition using the electroencephalogram (EEG) has garnered significant attention within the realm of human–computer interaction due to the wealth of genuine emotional data stored in EEG signals. However, traditional emotion recognition methods are deficient in mining the connection between multi-domain features and fitting their advantages. In this paper, we propose a novel capsule Transformer network based on a multi-domain feature for EEG-based emotion recognition, referred to as MES-CTNet. The model’s core consists of a multichannel capsule neural network(CapsNet) embedded with ECA (Efficient Channel Attention) and SE (Squeeze and Excitation) blocks and a Transformer-based temporal coding layer. Firstly, a multi-domain feature map is constructed by combining the space–frequency–time characteristics of the multi-domain features as inputs to the model. Then, the local emotion features are extracted from the multi-domain feature maps by the improved CapsNet. Finally, the Transformer-based temporal coding layer is utilized to globally perceive the emotion feature information of the continuous time slices to obtain a final emotion state. The paper fully experimented on two standard datasets with different emotion labels, the DEAP and SEED datasets. On the DEAP dataset, MES-CTNet achieved an average accuracy of 98.31% in the valence dimension and 98.28% in the arousal dimension; it achieved 94.91% for the cross-session task on the SEED dataset, demonstrating superior performance compared to traditional EEG emotion recognition methods. The MES-CTNet method, utilizing a multi-domain feature map as proposed herein, offers a broader observation perspective for EEG-based emotion recognition. It significantly enhances the classification recognition rate, thereby holding considerable theoretical and practical value in the EEG emotion recognition domain.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3