Physiological and Neural Changes with Rehabilitation Training in a 53-Year Amputee: A Case Study

Author:

Mao Lin,Lu Xiao,Yu Chao,Yin Kuiying

Abstract

Many people who received amputation wear sEMG prostheses to assist in their daily lives. How these prostheses promote muscle growth and change neural activity remains elusive. We recruited a subject who had his left hand amputated for over 53 years to participate in a six-week rehabilitation training using an sEMG prosthesis. We tracked the muscle growth of his left forearm and changes in neural activity over six weeks. The subject showed an increase in fast muscle fiber in his left forearm during the training period. In an analysis of complex networks of neural activity, we observed that the α-band network decreased in efficiency but increased in its capability to integrate information. This could be due to an expansion of the network to accommodate new movements enabled by rehabilitation training. Differently, we found that in the β-band network, a band frequency related to motor functions, the efficiency of the network initially decreased but started to increase after approximately three weeks. The ability to integrate network information showed an opposite trend compared with its efficiency. rMT values, a measure that negatively correlates with cortical excitability, showed a sharp decrease in the first three weeks, suggesting an increase in cortical excitability. In the last three weeks, there was little to no change. These data indicate that rehabilitation training promoted fast muscle fiber growth and introduced neural activity changes in the subject during the first three weeks of training. Our study gave insights into how rehabilitation training with an sEMG prosthesis could lead to physiological and neural changes in amputees.

Funder

The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3