Reorganization of cortical blood flow and transcranial magnetic stimulation maps in human subjects after upper limb amputation

Author:

Kew J. J.1,Ridding M. C.1,Rothwell J. C.1,Passingham R. E.1,Leigh P. N.1,Sooriakumaran S.1,Frackowiak R. S.1,Brooks D. J.1

Affiliation:

1. Medical Research Council Cyclotron Unit, Hammersmith Hospital, London, United Kingdom.

Abstract

1. Two complimentary techniques were used to study cortical function in six human upper limb amputees: positron emission tomographic (PET) measurements of regional cerebral blood flow (rCBF) were made in subjects during limb movements to study activation of the primary motor (M1), primary somatosensory (S1), and association cortices; and electromyographic responses to transcranial magnetic stimulation (TMS) were measured in proximal upper limb muscles to assess the excitability of corticospinal neurons in subjects at rest. 2. To explore possible cortical mechanisms governing the phantom limb phenomenon, PET and TMS findings were compared between subjects with acquired, traumatic upper limb amputations (n = 3), in whom phantom limb symptoms were prominent, and congenital upper limb amputees (n = 3) without phantom limbs. 3. Paced shoulder movements were associated with significant blood flow increases in the contralateral M1/S1 cortex of both groups of amputees. In traumatic amputees, these increases were present over a wider area and were of significantly greater magnitude in the partially deafferented cortex contralateral to the amputation. In congenital amputees blood flow increases were also present over a wider area in the partially deafferented M1/S1 cortex, but their magnitude was not significantly different from that in the normally afferented M1/S1 cortex. 4. Abnormal blood flow increases also were present in the partially deafferented M1/S1 cortex of traumatic amputees during movement of the ipsilateral, intact arm. Abnormal ipsilateral M1/S1 responses were not present during movement of the intact arm in the congenital group. 5. TMS studies showed that the abnormal blood flow increases in the partially deafferented M1 cortex of traumatic amputees were associated with increased corticospinal excitability.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 258 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3