Cystometric Measurements in Rats with an Experimentally Induced Traumatic Brain Injury and Voiding Dysfunction: A Time-Course Study

Author:

Praveen Rajneesh ,Yang ,Chen ,Hsieh ,Chin ,Peng

Abstract

Traumatic brain injuries (TBIs) are a serious public health issue worldwide with increased mortality as well as severe disabilities and injuries caused by falls and road accidents. Unfortunately, there is no approved therapy for TBIs, and bladder dysfunction is a striking symptom. Accordingly, we attempted to analyze bladder dysfunction and voiding efficiency in rats with a TBI at different time-course intervals. Time-dependent analyses were scheduled from the next day until four weeks after a TBI. Experimental animals were grouped and analyzed under the above conditions. Cystometric measurements were used for this analysis and were further elaborated as external urethral sphincter electromyographic (EUS-EMG) activity and cystometrogram (CMG) measurements. Moreover, magnetic resonance imaging (MRI) studies were conducted to investigate secondary injury progression in TBI rats, and results were compared to normal control (NC) rats. Results of EUS-EMG revealed that the burst period, active period, and silent period in TBI rats were drastically reduced compared to NC rats, but they increased later and reached a stagnant phase. Likewise, in CMG measurements, bladder function, the voided volume, and voiding efficiency decreased immediately after the TBI, and other parameters like the volume threshold, inter-contraction interval, and residual volume drastically increased. Later, those levels changed, and all observed results were compared to NC rats. MRI results revealed the prevalence of cerebral edema and the progression of secondary injury. All of the above-stated results of the experiments were extensively substantiated. Thus, these innovative findings of our study model will surely pave the way for new therapeutic interventions for TBI treatment and prominently highlight their applications in the field of neuroscience in the future.

Funder

Ministry of Science and Technology, Taiwan

Ministry of Education

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3