Efficacy of Deep Brain Stimulation on the Improvement of the Bladder Functions in Traumatic Brain Injured Rats

Author:

Praveen Rajneesh ChellappanORCID,Liou Jian-Chiun,Hsieh Tsung-HsunORCID,Chin Hung-Yen,Peng Chih-WeiORCID

Abstract

Objective: Traumatic brain injuries (TBIs) are a prime public health challenge with a high incidence of mortality, and also reflect severe economic impacts. One of their severe symptoms is bladder dysfunction. Conventional therapeutic methods are not effective in managing bladder dysfunction. Henceforth, a research endeavor was attempted to explore a new therapeutic approach for bladder dysfunction through deep brain stimulation (DBS) procedures in a TBI animal model. Methods: TBI in this animal model was induced by the weight-drop method. All rats with an induced TBI were housed for 4 weeks to allow severe bladder dysfunction to develop. Subsequently, an initial urodynamic measurement, the simultaneous recording of cystometric (CMG) and external urethral sphincter electromyography (EUS-EMG) activity was conducted to evaluate bladder function. Further, standard DBS procedures with varying electrical stimulation parameters were executed in the target area of the pedunculopontine tegmental nucleus (PPTg). Simultaneously, urodynamic measurements were re-established to compare the effects of DBS interventions on bladder functions. Results: From the variable combinations of electrical stimulation, DBS at 50 Hz and 2.0 V, significantly reverted the voiding efficiency from 39% to 69% in TBI rats. Furthermore, MRI studies revealed the precise localization of the DBS electrode in the target area. Conclusions: The results we obtained showed an insightful understanding of PPTg-DBS and its therapeutic applications in alleviating bladder dysfunction in rats with a TBI. Hence, the present study suggests that PPTg-DBS is an effective therapeutic strategy for treating bladder dysfunction.

Publisher

MDPI AG

Subject

General Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3