Affiliation:
1. Department of Information Systems, King Khalid University, Alfara, Abha 61421, Saudi Arabia
2. Department of Computer Science, King Khalid University, Alfara, Abha 61421, Saudi Arabia
Abstract
Medical education is one of the most sought-after disciplines for its prestigious and noble status. Institutions endeavor to identify admissions criteria to register bright students who can handle the complexity of medical training and become competent clinicians. This study aims to apply statistical and educational data mining approaches to study the relationship between pre-admission criteria and student performance in medical programs at a public university in Saudi Arabia. The present study is a retrospective cohort study conducted at the College of Computer Science, King Khalid University, Abha, Kingdom of Saudi Arabia between February and November 2022. The current pre-admission criterion is the admission score taken as the weighted average of high school percentage (HSP), general aptitude test (GAT) and standard achievement admission test (SAAT), with respective weights of 0.3, 0.3 and 0.4. Regression and optimization techniques have been applied to identify weightages that better fit the data. Five classification techniques—Decision Tree, Neural Network, Random Forest, Naïve Bayes and K-Nearest Neighbors—are employed to develop models to predict student performance. The regression and optimization analyses show that optimized weights of HSP, GAT and SAAT are 0.3, 0.2 and 0.5, respectively. The results depict that the performance of the models improves with admission scores based on optimized weightages. Further, the Neural Network and Naïve Bayes techniques outperform other techniques. Firstly, this study proposes to revise the weights of HSP, GAT and SAAT to 0.3, 0.2 and 0.5, respectively. Secondly, as the evaluation metrics of models remain less than 0.75, this study proposes to identify additional student features for calculating admission scores to select ideal candidates for medical programs.
Funder
Deanship of Scientific Research, King Khalid University, Saudi Arabia
Reference45 articles.
1. How effective are selection methods in medical education? A systematic review;Patterson;Med. Educ.,2016
2. Factors associated with success in medical school: Systematic review of the literature;Ferguson;BMJ,2002
3. Saudi medical education: Challenges in the new millennium;J. Fam. Community Med.,2000
4. The ability of the pre-admission criteria to predict performance in a Saudi medical school;Munshi;Saudi Med. J.,2010
5. Admission criteria to Saudi medical schools. Which is the best predictor for successful achievement?;Albishri;Saudi Med. J.,2012
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献