Abstract
Diffusion tensor imaging (DTI)-based fiber tractography is routinely used in clinical applications to visualize major white matter tracts, such as the corticospinal tract (CST), optic radiation (OR), and arcuate fascicle (AF). Nevertheless, DTI is limited due to its capability of resolving intra-voxel multi-fiber populations. Sophisticated models often require long acquisition times not applicable in clinical practice. Diffusion kurtosis imaging (DKI), as an extension of DTI, combines sophisticated modeling of the diffusion process with short acquisition times but has rarely been investigated in fiber tractography. In this study, DTI- and DKI-based fiber tractography of the CST, OR, and AF was investigated in healthy volunteers and glioma patients. For the CST, significantly larger tract volumes were seen in DKI-based fiber tractography. Similar results were obtained for the OR, except for the right OR in patients. In the case of the AF, results of both models were comparable with DTI-based fiber tractography showing even significantly larger tract volumes in patients. In the case of the CST and OR, DKI-based fiber tractography contributes to advanced visualization under clinical time constraints, whereas for the AF, other models should be considered.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献