Feasibility of an Intelligent Algorithm Based on an Assist-as-Needed Controller for a Robot-Aided Gait Trainer (Lokomat) in Neurological Disorders: A Longitudinal Pilot Study

Author:

Laszlo Caroline1,Munari Daniele2,Maggioni Serena2,Knechtle Deborah3,Wolf Peter1,De Bon Dino3

Affiliation:

1. Sensory-Motor Systems (SMS) Lab, ETH Zurich, 8006 Zurich, Switzerland

2. Hocoma AG, 8604 Volketswil, Switzerland

3. Revigo, Rehaklinik Zihlschlacht AG, 8604 Volketswil, Switzerland

Abstract

Most robotic gait assisted devices are designed to provide constant assistance during the training without taking into account each patient’s functional ability. The Lokomat offers an assist-as-needed control via the integrated exercise “Adaptive Gait Support” (AGS), which adapts the robotic support based on the patient’s abilities. The aims of this study were to examine the feasibility and characteristics of the AGS during long-term application. Ten patients suffering from neurological diseases underwent an 8-week Lokomat training with the AGS. They additionally performed conventional walking tests and a robotic force measurement. The difference between robotic support during adaptive and conventional training and the relationship between the robotic assessment and the conventional walking and force tests were examined. The results show that AGS is feasible during long-term application in a heterogeneous population. The support during AGS training in most of the gait phases was significantly lower than during conventional Lokomat training. A relationship between the robotic support level determined by the AGS and conventional walking tests was revealed. Moreover, combining the isometric force data and AGS data could divide patients into clusters, based on their ability to generate high forces and their level of motor control. AGS shows a high potential in assessing patients’ walking ability, as well as in providing challenging training, e.g., by automatically adjusting the robotic support throughout the whole gait cycle and enabling training at lower robotic support.

Publisher

MDPI AG

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3