Assessing walking ability using a robotic gait trainer: opportunities and limitations of assist-as-needed control in spinal cord injury

Author:

Maggioni Serena,Lünenburger Lars,Riener Robert,Curt Armin,Bolliger Marc,Melendez-Calderon Alejandro

Abstract

Abstract Background Walking impairments are a common consequence of neurological disorders and are assessed with clinical scores that suffer from several limitations. Robot-assisted locomotor training is becoming an established clinical practice. Besides training, these devices could be used for assessing walking ability in a controlled environment. Here, we propose an adaptive assist-as-needed (AAN) control for a treadmill-based robotic exoskeleton, the Lokomat, that reduces the support of the device (body weight support and impedance of the robotic joints) based on the ability of the patient to follow a gait pattern displayed on screen. We hypothesize that the converged values of robotic support provide valid and reliable information about individuals’ walking ability. Methods Fifteen participants with spinal cord injury and twelve controls used the AAN software in the Lokomat twice within a week and were assessed using clinical scores (10MWT, TUG). We used a regression method to identify the robotic measure that could provide the most relevant information about walking ability and determined the test–retest reliability. We also checked whether this result could be extrapolated to non-ambulatory and to unimpaired subjects. Results The AAN controller could be used in patients with different injury severity levels. A linear model based on one variable (robotic knee stiffness at terminal swing) could explain 74% of the variance in the 10MWT and 61% in the TUG in ambulatory patients and showed good relative reliability but poor absolute reliability. Adding the variable ‘maximum hip flexor torque’ to the model increased the explained variance above 85%. This did not extend to non-ambulatory nor to able-bodied individuals, where variables related to stance phase and to push-off phase seem more relevant. Conclusions The novel AAN software for the Lokomat can be used to quantify the support required by a patient while performing robotic gait training. The adaptive software might enable more challenging training conditions tuned to the ability of the individuals. While the current implementation is not ready for assessment in clinical practice, we could demonstrate that this approach is safe, and it could be integrated as assist-as-needed training, rather than as assessment. Trial registration ClinicalTrials.gov Identifier: NCT02425332.

Funder

FP7 Health

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Rehabilitation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3