Surface Subsidence Prediction Method for Backfill Mining in Shallow Coal Seams with Hard Roofs for Building Protection

Author:

Huo Wenqi12,Li Huaizhan12ORCID,Guo Guangli12,Wang Yuezong12,Yuan Yafei2

Affiliation:

1. Key Laboratory of Resources and Environment Information Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China

Abstract

The mining of shallow coal seams with hard roofs poses a threat to surface structures. In order to ensure the protection of these buildings, backfill mining is increasingly used in these types of coal seams. However, due to the lack of appropriate surface subsidence prediction methods, there are concerns about whether backfill mining can meet the requirements of building protection. In this study, through numerical simulation and physical experiments, the movement characteristics of the strata and surface were studied in the backfill mining of a shallow coal seam with a hard roof. Our results indicate that the backfilling ratio significantly influences strata movement and surface subsidence. As the backfilling ratio increases, the surface deformation in the backfill under the hard roof of the shallow coal seam transitions from discontinuous to continuous. When the backfilling ratio exceeds 60%, the deformation characteristics of the overburden and surface align with the probability integral method model. Consequently, a novel surface subsidence prediction method for backfill mining in shallow coal seams under hard roofs is proposed. This method was successfully applied at Yungang Mine, validating its effectiveness. These research findings have significant practical implications for the design of backfill mining in shallow coal seams under hard roofs.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3