Research on Mining Subsidence Prediction Parameter Inversion Based on Improved Modular Vector Method

Author:

Chai Huabin1,Xu Mingtao1,Guan Pengju1,Ding Yahui1,Xu Hui1,Zhao Yuqiao1

Affiliation:

1. College Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China

Abstract

In this study conducted in the Shendong mining area, this paper tackles the challenge of estimating mining subsidence parameters in the absence of empirical values. The study employs a tailored pattern recognition method specifically designed for mining subsidence in a specific working face. The goal is to determine a globally approximate optimal solution for these parameters. Subsequently, this study utilizes the approximate optimal solution as an initial exploration value and harnesses the modular vector method to obtain stable, accurate, optimal solutions for the parameters. The results of the study demonstrate the effectiveness of the improved modular vector method. In simulation tests involving the subsidence coefficient, the main influence angle tangent value, the propagation angle of mining influence, and the deviation of the inflection point, the relative errors do not exceed 1.2%, 1.9%, 1.7%, and 7.9%, respectively. Furthermore, when subjected to random errors of less than 20 mm, the relative errors for each parameter remain below 2%. Even in conditions with 200 mm gross error, the relative error for each parameter does not exceed 5.1%, indicating high precision. In an engineering example, the root mean square error of the improved modular vector method’s fitting result is 64.31 mm, constituting a mere 1.79% of the maximum subsidence value. This performance surpasses that of the genetic algorithm (70.47 mm), particle swarm algorithm (72.82 mm), and simulated annealing algorithm (75.45 mm). Notably, the improved modular vector method exhibits superior stability and reduced reliance on the quantity of measured values compared to the three aforementioned algorithms. The inversion analysis of predicted parameters based on the improved modular vector method, coupled with the probability integral method, holds practical significance for enhancing the accuracy of mining subsidence prediction.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3