Enhanced Ant Colony Optimization for Vehicular Ad Hoc Networks Using Fittest Node Clustering

Author:

Bijalwan Akhilesh1,Hussain Iqram2ORCID,Purohit Kamlesh Chandra1ORCID,Kumar M. Anand3ORCID

Affiliation:

1. Department of CSE, Graphic Era Deemed to Be University Dehradun, Uttarakhand 248002, India

2. Department of Anesthesiology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA

3. School of Information Science, Presidency University, Bengaluru 700073, India

Abstract

Vehicular ad hoc networks (VANETs) are a rapidly evolving field at the intersection of intelligent transportation systems, emphasizing the need for a stable and scalable VANET topology to accommodate growing vehicular densities. The intricate challenge of route selection calls for advanced clustering protocols to bolster road safety and message routing. This research introduces a novel approach to intelligent clustering routing protocols, leveraging heuristic-based solutions built upon an enhanced ant colony optimizer (ACO) framework. The study unfolds in two stages: the creation of a dynamic search space model and the election of cluster heads (CHs). The innovative dynamic aware transmission range parallel Euclidean distance (DA-TRPED) technique establishes a dynamic search space using the parallel Euclidean distance (PED) concept. This approach evaluates vehicular nodes by estimating PED values, reducing the search process’s complexity. Subsequently, an intelligent cluster head is selected by enhancing the dynamic evaporation factor (DEF) within the ACO technique. The experimental validation of the DA-TRPED technique takes place in NS2 simulations, demonstrating superior performance compared to conventional ACO. This enhancement is evident in metrics such as packet delivery, packet drop, throughput, end-to-end delay, and the lifetime analysis of clustered nodes. The proposed approach holds promise for optimizing VANETs, enhancing their stability and scalability while promoting road safety and efficient message routing.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3