Arithmetic optimization based secure intelligent clustering algorithm for Vehicular Adhoc Network

Author:

Ali AsadORCID,Assam Muhammad,Alajmi Masoud,Ghadi Yazeed YasinORCID,Indira Salgozha,Akhmediyarova Ainur,Alahmadi Tahani Jaser,Alkahtani Hend Khalid

Abstract

Vehicular Adhoc Network (VANET) suffers from the loss of perilous data packets and disruption of links due to the fast movement of vehicles and dynamic network topology. Moreover, the reliability of the vehicular network is also threatened by malicious vehicles and messages. The malicious vehicle can promulgate fake messages to the node to misguide it, which may result in the loss of precious lives. In this situation, maintaining efficient, reliable, and secure communication among automobiles is of extreme importance, especially for a densely populated network. One of the remedies is vehicular clustering, which can effectively perform in a high-density network. However, secure cluster formation and cluster optimization are important factors to consider during the clustering process because non-optimal clusters may incur high end-to-end communication delays and produce overhead on the network. In addition, malicious nodes and packets reduce passenger and driver safety, increase road accidents, and waste passenger and driver time. To this end, we employ Arithmetic Optimization Algorithm (AOA) to design a secure intelligent clustering named AOACNET. AOA is used to achieve optimality of vehicular clusters. During cluster formation, the algorithm prevents unauthentic nodes from becoming cluster members by taking into consideration the performance value of each automobile. The vehicle’s performance value is based on the record of data transmission. If a vehicle transmits a fake message, it will receive a penalty of (-1), and in the case of transmitting a legitimate message, a reward of (+1) will be assigned to the vehicle. Initially, all the vehicles have equal performance value which either increase or decrease based on communication with their peers. The vehicles will become cluster members only if their performance value is greater than the threshold value (0). AOACNET is tested in MATLAB using various evaluation metrics (i.e., number of clusters, load balancing, computational time, network overhead and delay). The simulation results show that the proposed algorithm performs up to 25% better than the similar contenders in terms of designated optimization objectives.

Funder

Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3