Evaluating Three Supervised Machine Learning Algorithms (LM, BR, and SCG) for Daily Pan Evaporation Estimation in a Semi-Arid Region

Author:

Aghelpour PouyaORCID,Bagheri-Khalili ZahraORCID,Varshavian VahidORCID,Mohammadi BabakORCID

Abstract

Evaporation is one of the main components of the hydrological cycle, and its estimation is crucial and important for water resources management issues. Access to a reliable estimator tool for evaporation simulation is important in arid and semi-arid areas such as Iran, which lose more than 70% of their received precipitation by evaporation. Current research employs the Bayesian Regularization (BR) and Scaled Conjugate Gradient (SCG) algorithms for training the Multilayer Perceptron (MLP) model (as MLP-BR and MLP-SCG) and comparing their performance with the Levenberg–Marquardt (LM) algorithm (as MLP-LM). For this purpose, 16 meteorological variables were used on a daily scale; including temperature (5 variables), air pressure (4 variables), and relative humidity (6 variables) as input data sets, and pan evaporation as the target variable of the MLP model. The surveys were conducted during the period of 2006–2021 in Fars Province in Iran, which is a semi-arid region and has many natural lakes. Various combinations of input-target pairs were tested by several learning algorithms, resulting in seven input scenarios: (1) temperature-based (T), (2) pressure-based (F), (3) humidity-based (RH), (4) temperature–pressure-based (T-F), (5) temperature–humidity-based (T-RH), (6) pressure–humidity-based (F-RH) and (7) temperature–pressure–humidity-based (T-F-RH). The results indicated the relative superiority of the three-component scenario of T-F-RH, and a considerable weakness in the single-component scenario of RH compared with others. The best performance with a root mean square error (RMSE) equal to 1.629 and 1.742 mm per day and a Wilmott Index (WI) equal to 0.957 and 0.949 (respectively for validation and test periods) belonged to the MLP-BR model. Additionally, the amount of R2 (greater than 84%), Nash-Sutcliff efficiency (greater than 0.8) and normalized RMSE (less than 0.1) all indicate the reliability of the estimates provided for the daily pan evaporation. In the comparison between the studied training algorithms, two algorithms, BR and SCG, in most cases, showed better performance than the powerful and common LM algorithm. The obtained results suggest that future researchers in this field consider BR and SCG training algorithms for the supervised training of MLP for the numerical estimation of pan evaporation by the MLP model.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference69 articles.

1. Experimental study of evaporation reduction using polystyrene coating, wood and wax and its estimation by intelligent algorithms;Ghazvinian;Irrig. Water Eng.,2020

2. Evaluation of soft computing and regression-based techniques for the estimation of evaporation;Singh;J. Water Clim. Chang.,2021

3. Estimation of daily pan evaporation using neural networks and meta-heuristic approaches;Ashrafzadeh;ISH J. Hydraul. Eng.,2020

4. Pan evaporation modeling in different agroclimatic zones using functional link artificial neural network;Majhi;Inf. Process. Agric.,2021

5. Pan evaporation modeling using four different heuristic approaches;Wang;Comput. Electron. Agric.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3