Evaluation of soft computing and regression-based techniques for the estimation of evaporation

Author:

Singh Aparajita1,Singh R. M.1,Kumar A. R. Senthil2,Kumar Ashish1,Hanwat Subodh1,Tripathi V. K.1

Affiliation:

1. Department of Farm Engineering, Institute of Agricultural Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India

2. National Institute of Hydrology, Roorkee 247667, Uttarakhand

Abstract

Abstract The estimation of evaporation in the field as well as the regional level is required for the efficient planning and management of water resources. In the present study, artificial neural network (ANN) and multiple linear regression (MLR)-based models were developed to estimate the pan evaporation on the basis of one day-lagged rainfall (Pt−1), one day-lagged relative humidity (RHt−1), current day maximum temperature (Tmax) and minimum temperature (Tmin). These were selected as the most effective parameters on the basis of cross-correlation. The performance of models was evaluated using correlation coefficient (r), root-mean-square error (RMSE) and Nash–Sutcliffe efficiency (coefficient of efficiency, CE) during calibration and validation periods. Based on the comparison, the ANN model (4-9-1), with sigmoid as activation function and Levenberg–Marquardt as a learning algorithm, was selected as the best performing model among all ANN models. The values of r, CE and RMSE for training and validation periods were found as 0.885, 0.785 and 1.00 mm/day and 0.889, 0.782 and 1.01 mm/day, respectively, through the ANN model (4-9-1). The values of r, CE and RMSE for training and validation periods were found as 0.835, 0.698 and 1.19 mm/day and 0.866, 0.750 and 1.15 mm/day, respectively, through the selected MLR model. Based on the sensitivity analysis, RHt−1 is selected as the most effective parameter followed by Pt−1, Tmax and Tmin. The developed model can be utilized as an alternative for the estimation of the evaporation at the regional level with limited input data.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Reference26 articles.

1. Application of an artificial neural network to estimate groundwater level fluctuation;Affandi;Journal of Spatial Hydrology,2008

2. Artificial Neural Networks in Hydrology. II: Hydrologic Applications

3. Comparison of six rainfall-runoff modelling approaches

4. An artificial neural network approach to rainfall-runoff modelling

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3