Effect of Temperature on the Tribological Properties of Hafnium Carbonitrides Coatings

Author:

Aperador Willian1ORCID,Bautista-Ruiz Jorge2ORCID,Sánchez-Molina Jorge2ORCID

Affiliation:

1. School of Engineering, Universidad Militar Nueva Granada, Bogotá 110111, Colombia

2. Centro de Investigación de Materiales Cerámicos, Universidad Francisco de Paula Santander, San José de Cúcuta 540003, Colombia

Abstract

For industrial processes in which refractory metals are necessary, hafnium carbonitride exhibits excellent performance due to its high thermal conductivity and resistance to oxidation. In this study, hafnium carbonitride was deposited on Inconel 718 steel and silicon (100) substrates. The objective was to characterize the wear properties as a function of temperature. The layers were deposited by physical vapor deposition (PVD) in an R.F. sputtering magnetron system from carbon targets and high-purity hafnium (99.99%). The wear tests were carried out at temperatures of 100 °C, 200 °C, 400 °C, and 800 °C in non-lubricated conditions. The coefficient of friction (COF) was recorded in situ. The heat treatment temperature on coatings is essential in determining anti-wear efficiency. It was determined that high temperatures (800 °C) improve resistance to wear. High-resolution XPS spectra were used to detect the chemical states of Hf 4f5/2 and Hf 4f7/2. The 4f5/2 and 4f7/2 binding energy indicates the presence of HfN and HfC. Using the TEM technique in bright field mode allowed us to know the orientation, crystallographic structure and interplanar distances of the HfCN. The topography of the coatings, by AFM, shows uniform grains and very small characteristics that determine the low surface roughness value. The SEM image of the cross-section of the HfCN coating shows homogeneity of the layer; no cracks or deformations are observed.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3