Electrochemical Properties of TiWN/TiWC Multilayer Coatings Deposited by RF-Magnetron Sputtering on AISI 1060

Author:

González-Hernández Andrés,Morales-Cepeda Ana Beatriz,Flores MartínORCID,Caicedo Julio C.,Aperador William,Amaya César

Abstract

Nitride and carbide ternary coatings improve the wear and corrosion resistance of carbon steel substrates. In this work, Ti-W-N and Ti-W-C coatings were deposited on AISI 1060 steel substrates using reactive radio frequency (RF) magnetron sputtering. The coatings were designed as monolayers, bilayers, and multilayers of 40 periods. The coatings were obtained with simultaneous sputtering of Ti and W targets. The microstructure, composition, and electrochemical properties were investigated by techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization. XRD results shower a mix of binary TiN and W2N structures in the Ti-W-N layer, a ternary phase in Ti-W-C layers, in addition of a quaternary phase of Ti-W-CN in the multilayers. The analysis of the XPS demonstrated that the atomic concentration of Ti was more significant than W in the Ti-W-N and Ti-W-C layers. The lowest corrosion rate (0.19 mm/year−1) and highest impedance (~10 kΩ·cm2) out of all coatings were found in n = 40 bilayers. In the simulation of equivalent electrical circuits, it was found that the Ti-W-N coating presented three processes of impedance (Pore resistance + Coating + Inductance). However, the multilayer (n = 40) system presented a major dielectric constant through the electrolyte adsorption; therefore, this caused an increase in the capacitance of the coating.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference63 articles.

1. A study of the wear performance of TiN, CrN and WC/C coatings on different steel substrates

2. PVD and CVD Coatings for the Metal Forming Industry. Conference Papers;Montgomery,2010

3. 3.16 Hard Coatings on Cutting Tools and Surface Finish

4. Tribological and Wear Performance of Nanocomposite PVD Hard Coatings Deposited on Aluminum Die Casting Tool

5. Corrosion behavior of Ti2N thin films in various corrosive environments;Patel;J. Mater. Environ. Sci.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3