Flow Angularity Investigations in an Automotive Slotted Wall Wind Tunnel

Author:

Ljungskog EmilORCID,Sebben SimoneORCID,Broniewicz AlexanderORCID

Abstract

The Volvo Cars aerodynamic wind tunnel has had a vortical flow angularity pattern in the test section since its original commissioning in 1986. The vortical flow nature persisted after an upgrade in 2006, when the fan was replaced and a moving ground system was introduced. It has been hypothesized that the cause for this flow angularity pattern was leakages around the heat exchanger installed in the settling chamber. The present paper tests this hypothesis by measuring the flow angularity in the test section before and after sealing the leakages. The findings show that the leakage path around the heat exchanger does not influence the flow angularity, and that the current pattern is different compared to the commissioning after the upgrade. This prompted an investigation of the influence from the turbulence screens, which were changed after the upgrade commissioning. These investigations indicate that the probable cause of the vortical flow angularity pattern is residual swirl from the fan. Force measurements on a reference car with and without extra induced flow angularity show that the flow angles measured in the tunnel for regular operation are most likely small enough to not have a significant effect on the measured aerodynamic forces.

Funder

VINNOVA

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference25 articles.

1. Global Technical Regulation No. 15 (Worldwide Harmonized Light Vehicles Test Procedure), Appendix 1 to Amendment 1 to UN GTR No. 15 ECE/TRANS/180/Add.15/Amend.1/Appendix 1. United Nations Global Technical Regulation https://www.unece.org/fileadmin/DAM/trans/main/wp29/wp29wgs/wp29gen/wp29registry/ECE-TRANS-180a15am1app1e.pdf

2. The New Volvo Multipurpose Automotive Wind Tunnel

3. Aerodynamic Flow Quality and Acoustic Characteristics of the 40- by 80-Foot Test Section Circuit of the National Full-Scale Aerodynamic Complex

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3